Apical electrogenic NaHCO3 cotransport. A mechanism for HCO3 absorption across the retinal pigment epithelium
نویسندگان
چکیده
Intracellular microelectrode techniques and intracellular pH (pHi) measurements using the fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) were employed to characterize an electrogenic bicarbonate transport mechanism at the apical membrane of the frog retinal pigment epithelium (RPE). Reductions in apical concentrations of both [HCO3]o (at constant Pco2 or pHo) or [Na]o caused rapid depolarization of the apical membrane potential (Vap). Both of these voltage responses were inhibited when the concentration of the other ion was reduced or when 1 mM diisothiocyano-2-2 disulfonic acid stilbene (DIDS) was present in the apical bath. Reductions in apical [HCO3]o or [Na]o also produced a rapid acidification of the cell interior that was inhibited by apical DIDS. Elevating pHi at constant Pco2 (and consequently [HCO3]i) by the addition of apical NH4 (20 mM) produced an immediate depolarization of Vap. This response was much smaller when either apical [HCO3]o or [Na]o was reduced or when DIDS was added apically. These results strongly suggest the presence of an electrogenic NaHCO3 cotransporter at the apical membrane. Apical DIDS rapidly depolarized Vap by 2-3 mV and decreased pHi (and [HCO3]i), indicating that the transporter moves NaHCO3 and net negative charge into the cell. The voltage dependence of the transporter was assessed by altering Vap with transepithelial current and then measuring the DIDS-induced change in Vap. Depolarization of Vap increased the magnitude of the DIDS-induced depolarization, whereas hyperpolarization decreased it. Hyperpolarizing Vap beyond -114 mV caused the DIDS-induced voltage change to reverse direction. Based on this reversal potential, we calculate that the stoichiometry of the transporter is 1.6-2.4 (HCO3/Na).
منابع مشابه
Apical Electrogenic NaHCO Cotransport A Mechanism for HC03 Absorption across the Retinal Pigment Epithelium
Intracellular microelectrode techniques and intraceUular pH (pHi) measurements using the fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) were employed to characterize an electrogenic bicarbonate transport mechanism at the apical membrane of the frog retinal pigment epithelium (RPE). Reductions in apical concentrations of both [HCOs]o (at constant Pco2 or pHo) or [Na]o ca...
متن کاملNa-dependent pHi regulatory mechanisms in native human retinal pigment epithelium.
This study provides the first information about pHi regulatory mechanisms in human retinal pigment epithelium (RPE). The experiments were carried out on fresh explant tissues from adult donor and fetal eyes, and pHi was measured using fluorescence microscopy techniques and the pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. In adult donor RPE, the resting pHi is 7.30 +/- 0.14 ...
متن کاملPotassium modulation of taurine transport across the frog retinal pigment epithelium
Net taurine transport across the frog retinal pigment epithelium-choroid was measured as a function of extracellular potassium concentration, [K+]o. The net rate of retina-to-choroid transport increased monotonically as [K+]o increased from 0.2 mM to 2 mM on the apical (neural retinal) side of the tissue. No further increase was observed when [k+]o was elevated to 5 mM. The [K+]o changes that m...
متن کاملPotassium-dependent volume regulation in retinal pigment epithelium is mediated by Na,K,Cl cotransport
Changes in retinal pigment epithelial (RPE) cell volume were measured by monitoring changes in intracellular tetramethylammonium (TMA) using double-barreled K-resin microelectrodes. Hyperosmotic addition of 25 or 50 mM mannitol to the Ringer of the apical bath resulted in a rapid (approximately 30 s) osmometric cell shrinkage. The initial cell shrinkage was followed by a much slower (minutes) s...
متن کاملEffect of chloride on pH microclimate and electrogenic Na+ absorption across the rumen epithelium of goat and sheep.
Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogeni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 94 شماره
صفحات -
تاریخ انتشار 1989